எங்கள் குழு ஒவ்வொரு ஆண்டும் அமெரிக்கா, ஐரோப்பா மற்றும் ஆசியா முழுவதும் 1000 அறிவியல் சங்கங்களின் ஆதரவுடன் 3000+ உலகளாவிய மாநாட்டுத் தொடர் நிகழ்வுகளை ஏற்பாடு செய்து 700+ திறந்த அணுகல் இதழ்களை வெளியிடுகிறது, இதில் 50000 க்கும் மேற்பட்ட தலைசிறந்த ஆளுமைகள், புகழ்பெற்ற விஞ்ஞானிகள் ஆசிரியர் குழு உறுப்பினர்களாக உள்ளனர்.
அதிக வாசகர்கள் மற்றும் மேற்கோள்களைப் பெறும் திறந்த அணுகல் இதழ்கள்
700 இதழ்கள் மற்றும் 15,000,000 வாசகர்கள் ஒவ்வொரு பத்திரிகையும் 25,000+ வாசகர்களைப் பெறுகிறது
Younes AM, Hegazi MM, Beall GW, Al-Sharkawey AE, Dashti NH and Montasser MS
This is the first report on a rapid green synthesis of gold nanoparticles (GNPs) using red algae (Laurencia papillosa). The green synthesis of eco-friendly nanoparticles is of a great interest in Nanoscience for biomedical applications and specifically for clinical diagnostic applications. GNPs especially nanoprism represents a new advanced tool to study cell function and useful in optoelectronics, in developing a drug delivery system to control plant virus diseases and in nanomedicine. Conventional physical and chemical methods have been developed for the synthesis of metal nanoparticles, but these methods are expensive and require the use of toxic and aggressive chemicals. In this paper it is demonstrated that a rapid, low coast and ecofriendly method for synthesis of gold nanosphere and its conversion into gold nanoprism has been developed. The method involves using water solvent extract of Laurencia papillosa as a reducing agent. Nanoscopy analysis revealed that the nanoprism and other different morphologies were obtained just by varying the concentration molarity of tetrachloauric acid (HAuCl4), keeping the concentration of pure algal extract (PAE) constant. The best concentration of AuCl4 was 5 mM and best concentration of the red algae extract was at 0.05 g/ml. The functional groups responsible for conversion of nanospheres into nanoprism were NH and OH groups found in the contents of the red algae extract. The as-synthesized gold nanoprisms were characterized by several physicochemical techniques. The nanoprisms are single crystalline, whose basal plates surface are atomically flat "111" planes. We anticipate our results to be a starting point for more applications in medicine and industrial technology.