எங்கள் குழு ஒவ்வொரு ஆண்டும் அமெரிக்கா, ஐரோப்பா மற்றும் ஆசியா முழுவதும் 1000 அறிவியல் சங்கங்களின் ஆதரவுடன் 3000+ உலகளாவிய மாநாட்டுத் தொடர் நிகழ்வுகளை ஏற்பாடு செய்து 700+ திறந்த அணுகல் இதழ்களை வெளியிடுகிறது, இதில் 50000 க்கும் மேற்பட்ட தலைசிறந்த ஆளுமைகள், புகழ்பெற்ற விஞ்ஞானிகள் ஆசிரியர் குழு உறுப்பினர்களாக உள்ளனர்.
அதிக வாசகர்கள் மற்றும் மேற்கோள்களைப் பெறும் திறந்த அணுகல் இதழ்கள்
700 இதழ்கள் மற்றும் 15,000,000 வாசகர்கள் ஒவ்வொரு பத்திரிகையும் 25,000+ வாசகர்களைப் பெறுகிறது
Chaudhuri C, Srivastava R, Tripathi SN and Misra A
We combine the seasonal mean precipitation and temperature from different datasets into a Bayesian framework using Multi-variable Bayesian Merging (MBaM) algorithm to draw a unified conclusion about their trend over the Indo-Gangetic Basin (IGB). The time series produced by the Bayesian method is combined into a Multi-variable Trend Principal Component (MTPC) setup to derive the equivalent climate change signals. These signals are then used to estimate the importance of different regional and global drivers influencing the climate change over the IGB. We show that the climate change over the IGB during pre-monsoon and monsoon seasons is very significant, during post-monsoon is less significant, and during winter season there is no indication of significant climate change. Global teleconnections are shown to have very little correlation to the climate change signal (e.g. RNino3=0.06∼0.21). On the other hand, the concentrations of greenhouse gases are found to exhibit very strong correlation (e.g RCO2 =0.94∼0.99) to the climate change signal, indicating their importance as drivers of the climate change over the IGB.