ஐ.எஸ்.எஸ்.என்: 2157-7617

பூமி அறிவியல் & காலநிலை மாற்றம் இதழ்

திறந்த அணுகல்

எங்கள் குழு ஒவ்வொரு ஆண்டும் அமெரிக்கா, ஐரோப்பா மற்றும் ஆசியா முழுவதும் 1000 அறிவியல் சங்கங்களின் ஆதரவுடன் 3000+ உலகளாவிய மாநாட்டுத் தொடர் நிகழ்வுகளை ஏற்பாடு செய்து 700+ திறந்த அணுகல் இதழ்களை வெளியிடுகிறது, இதில் 50000 க்கும் மேற்பட்ட தலைசிறந்த ஆளுமைகள், புகழ்பெற்ற விஞ்ஞானிகள் ஆசிரியர் குழு உறுப்பினர்களாக உள்ளனர்.

அதிக வாசகர்கள் மற்றும் மேற்கோள்களைப் பெறும் திறந்த அணுகல் இதழ்கள்

700 இதழ்கள் மற்றும் 15,000,000 வாசகர்கள் ஒவ்வொரு பத்திரிகையும் 25,000+ வாசகர்களைப் பெறுகிறது

குறியிடப்பட்டது
  • CAS மூல குறியீடு (CASSI)
  • குறியீட்டு கோப்பர்நிக்கஸ்
  • கூகுள் ஸ்காலர்
  • ஷெர்பா ரோமியோ
  • சுற்றுச்சூழலில் ஆராய்ச்சிக்கான ஆன்லைன் அணுகல் (OARE)
  • ஜே கேட் திறக்கவும்
  • ஜெனமிக்ஸ் ஜர்னல்சீக்
  • JournalTOCகள்
  • Ulrich's Periodicals Directory
  • விவசாயத்தில் உலகளாவிய ஆன்லைன் ஆராய்ச்சிக்கான அணுகல் (AGORA)
  • சர்வதேச வேளாண்மை மற்றும் உயிரியல் அறிவியல் மையம் (CABI)
  • RefSeek
  • ஹம்டார்ட் பல்கலைக்கழகம்
  • EBSCO AZ
  • OCLC- WorldCat
  • பிராக்வெஸ்ட் சம்மன்ஸ்
  • SWB ஆன்லைன் பட்டியல்
  • பப்ளான்கள்
  • யூரோ பப்
  • ICMJE
இந்தப் பக்கத்தைப் பகிரவும்

சுருக்கம்

Artificial Intelligence for Lithology Identification through Real-Time Drilling Data

Alireza Moazzeni and Mohammad Ali Haffar

In order to reduce drilling problems such as loss of circulation and kick, and to increase drilling rate, bit optimization and shale swelling prohibition, it is important to predict formation type and lithology in a well before drilling or at least during drilling. Although there are some methods for finding out the lithology such as log interpretation, there is no method for determining lithology before or during drilling by a great degree of accuracy. Determination of formation type and lithology is very complicated and no analytical method is presented for this problem so far. In this situation, it seems that artificial intelligence could be really helpful. Neural networks can establish complicated non-linear mapping between inputs and outputs. In this paper, formation type and lithology of the formation will be predicted using real-time drilling data with an acceptable accuracy, while drilling that formation using artificial neural network. 47500 sets of data from 12 wells in South Pars gas field (in south of Iran) were selected and, after data mining and quality control, were imported to artificial neural networks. Results show that neural networks can determine type of formation and lithology with near 90% accuracy.

மறுப்பு: இந்த சுருக்கமானது செயற்கை நுண்ணறிவு கருவிகளைப் பயன்படுத்தி மொழிபெயர்க்கப்பட்டது மற்றும் இன்னும் மதிப்பாய்வு செய்யப்படவில்லை அல்லது சரிபார்க்கப்படவில்லை.